* HW 9 Posted. due next Wed 5/8 Last HW
* Last lecture on Thursday 5/2
* RRR week, OH: 5/7 (The) 11-12
* Final Exam: 5/15/2019 (Wed) 11:30 - 2:30
- Closed book
- 6 pages of cheat sheet
* Turn TN ALL your Lab Report
* Please do course Survey

Neural Recording

An array of electrodes is implanted in the motor cortex and senses extracellular signals that include firing from nearby neurons

- The goal of a neural recording device is to record the smallamplitude neural signals and pick out the meaningful signals from the "noise".
- These signals are then decoded to create trajectories, movements, and speeds for controlling prostheses, computers, etc.

- In reality, the tiny signals recorded from the brain can get corrupted by numerous interferers.
- Ambient 60Hz noise couples into electrical signals in and on the body
- Motion can cause voltage artifacts from the movement of the electrodes relative to the neurons

CS with source degeneration Pue to mismatch, $R_{D1} = R_D$, $R_{D2} = R_0 + \Delta R_D$ $A_{CM} = \frac{-9m\Delta R_D}{1+2R_{SS}} \qquad \frac{\Delta R_D}{R_D} < 1\%$ M_{D0} $CMRR = \left[\frac{A_{cH}}{A_{cM}}\right] = \frac{9mR_D}{\left(\frac{9mA_D}{1+2R_{SS}}\right)} = \left(\frac{R_D}{\Delta R_D}\right)(1+2R_{SS}9m)$ $\int_{-9mT_0}^{-100} K_D$

$$A_V = \frac{V_o}{V_{Fd}} = \pm \frac{2}{5} g_m V_o$$